Abstract

State-of-the-art speaker verification systems take frame-level acoustics features as input and produce fixed-dimensional embeddings as utterance-level representations. Thus, how to aggregate information from frame-level features is vital for achieving high performance. This paper introduces short-time spectral pooling (STSP) for better aggregation of frame-level information. STSP transforms the temporal feature maps of a speaker embedding network into the spectral domain and extracts the lowest spectral components of the averaged spectrograms for aggregation. Benefiting from the low-pass characteristic of the averaged spectrograms, STSP is able to preserve most of the speaker information in the feature maps using a few spectral components only. We show that statistics pooling is a special case of STSP where only the DC spectral components are used. Experiments on VoxCeleb1 and VOiCES 2019 show that STSP outperforms statistics pooling and multi-head attentive pooling, which suggests that leveraging more spectral information in the CNN feature maps can produce highly discriminative speaker embeddings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.