Abstract

Macromolecular translocation inhibitor II (MTI-II), which was first identified as an in vitro inhibitor of binding between the highly purified glucocorticoid receptor (GR) and isolated nuclei, is an 11.5-kDa Zn(2+)-binding protein that is also known as ZnBP or parathymosin. MTI-II is a small nuclear acidic protein that is highly conserved in rats, cows, and humans and widely distributed in mammalian tissues, yet its physiological function is unknown. To elucidate its in vivo function in relation to GR, we transiently transfected mammalian cells with an expression plasmid encoding MTI-II. Unexpectedly, we found that the expression of MTI-II enhances the transcriptional activity of GR. The magnitude of the transcriptional enhancement induced by MTI-II is comparable with that induced by the steroid receptor coactivator SRC-1. In contrast, MTI-II had little effect on the transcriptional activity of estrogen receptor. Immunoprecipitation analysis showed that in the presence of glucocorticoid hormone, GR coprecipitates with MTI-II, and, vice versa, MTI-II coprecipitates with GR. The expression of various deletion mutants of MTI-II revealed that the central acidic domain is essential for the enhancement of GR-dependent transcription. Microscopic analysis of MTI-II fused to green fluorescent protein and GR fused to red fluorescent protein in living HeLa cells showed that MTI-II colocalizes with GR in discrete subnuclear domains in a hormone-dependent manner. Coexpression of MTI-II with the coactivator SRC-1 or p300 further enhances GR-dependent transcription. Immunoprecipitation analysis showed that in the presence of glucocorticoid hormone, p300 and CREB-binding protein are coprecipitated with MTI-II. Furthermore, the knockdown of endogenous MTI-II by RNAi reduces the transcriptional activity of GR in cells. Moreover, expression of MTI-II enhances the glucocorticoid-dependent transcription of the endogenous glucocorticoid-inducible enzyme in cells. Taken together, these results indicate that MTI-II enhances GR-dependent transcription via a direct interaction with GR in vivo. Thus, MTI-II is a new member of the GR-coactivator complex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.