Abstract
The probability and dimension of the simple macromolecular knots over a wide range of temperatures corresponding from good to poor solvents are investigated by Monte Carlo simulation. Macromolecular knots are modeled as rings of self-avoiding walks on a simple cubic lattice with the nearest neighbor attractions. We found that there is a minimum probability for the unknotted ring at a certain temperature. The size dependence of trivial, trefoil, and figure-eight knots on chain lengths and temperatures is presented. The simulation results for the size dependence on the knot's complication in different solvents are in good qualitative agreement with prediction of the scaling model proposed by Grosberg et al. The critical exponent for long chain is independent of the knot types based on the simulation results, although the mean square radius of gyration is influenced significantly by the knot types for a shorter length macromolecular ring. We calculated the ratio of the topological invariant p of trefoil knot and figure-eight knot and found that the ratio is approaching to 1.3 with the increasing of the chain length.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have