Abstract

The present study aimed to prepare nanofibrous inserts for sustained ocular drug delivery of Azithromycin (AZM) toward conquering the obstacles of conventional topical drug delivery. Nanofibers were fabricated by electrospinning using polycaprolactone (PCL) and cellulose acetate (CA) which are biocompatible and biodegradable polymers. Prepared nanofibers were evaluated in terms of physicochemical, morphological properties, pharmacokinetic study and ocular irritation. SEM images revealed average diameters of about 160 nm and 190 nm for CA and PCL nanofibers, respectively. These ocular drug delivery systems were strong, flexible, and stable under humid and dry conditions. Quantification was performed using microbiological assay by M. luteus as a microorganism. While PCL-based nanofibrous inserts released AZM in a two-step manner initiated by a burst release via Peppas kinetical model, CA-based inserts showed a gradual release profile without any burst release which followed the first-order model. Results showed that these inserts were non-cytotoxic and non-irritating. The nanofibers showed antibacterial efficacy against Escherichia coli and Staphylococcus aureus. In addition, according to a pharmacokinetic study in Rabbit’s Eye, a higher Cmax and lower Tmax were achieved by PCL nanofibers compared to CA-based ones. The pharmacokinetic study of nanofibers in rabbit eyes showed that all formulations were able to maintain the effective concentration of AZM for about 6 days. In conclusion, the prepared nanofibers can be effectively utilized for prolonged ocular delivery of AZM in the treatment of conjunctival infections.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.