Abstract

Dietary variability and the degradation and incorporation of macroalgae in key macroinvertebrate consumers were examined (1) in a monitoring field study including a natural attached canopy habitat and an adjacent habitat receiving natural accumulations of detritus, and (2) in a manipulative in situ experiment of macroalgal detritus at two different depths (3 and 6 m) in the archipelago of SW Finland. The monitoring field study, examining species-specific dietary responses across three sampling dates in natural macroalgal stands, showed that a pulse of drifting filamentous macroalgae shaped the dietary compositions of the abundant benthic macroinvertebrate consumers and that accumulations of drifting filamentous macroalgae were rapidly incorporated into the food web through epigrazers. The in situ field experiment simulating a natural accumulation event and the degradation process of Fucus vesiculosus during 60 days showed that algal decomposition progressed relatively slowly at both depths. Detectable increasing incorporation of Fucus-derived matter to epigrazers and detritivorous bivalves occurred after 2−3 weeks, while simultaneously the incorporation of filamentous algae decreased over time. Hence, the ecological role of decomposing F. vesiculosus might be more important in areas where the algal matter can accumulate for several months. The effect of depth influenced the food incorporation of typical epigrazers. The increasing depth from 3 to 6 m lowered the median proportion of Fucus-derived matter incorporated into the macrofauna community approximately by 10% points compared to the shallower depth of 3 m.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.