Abstract

Spatial distributions of trophic interactions define the spatial heterogeneity of food webs and differences between local and macroecological food webs. The concept of co-occurrence has to be given up when larger spatial scales are considered that integrate different local community food webs into a metacommunity food web. This chapter provides two examples. First, some large-bodied predators are too low in numerical abundance to invade all local community food webs simultaneously. Second, not all potential resource species in a metacommunity can persist under strong top-down pressure by their consumer species and thus avoid coexistence in the same local communities. Food webs consist of organisms that vary in their taxonomic identity, body size, trophic interactions, and trophic position and thus might have very different spatial scales of interactions. Recognition of the importance of spatial scale in food web studies has several implications for food web theory. In particular, the potential food webs that are frequently described by ecologists will often differ from how food webs are realized in actual space and time. Clearly, choosing the right spatio-temporal scale for a food web study depends on the species studied and the study objective. Integrating spatial processes such as extinction and colonization by dispersal in food web models is an important step towards understanding population dynamics in complex communities, and understanding the consequences of habitat loss for the community structure and food web dynamics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call