Abstract

The biomass of organisms of different sizes is increasingly being used to explore macroscale variation in food-web and community structure. Here we examine how invasive species and river flow regulation affect native fish biomass and fish community log10biomass – body mass scaling relationships in Australia’s largest river system, the Murray–Darling. The log10biomass – body mass scaling exponent (scaling B) of invasive fishes (95% CI: −0.14 to −0.18) was less negative than for native fishes (95% CI: −0.20 to −0.25), meaning that invasive species attained a higher biomass in larger size-classes compared to native species. Flow alteration and invasive common carp (Cyprinus carpio) biomass were correlated with severe reductions in native fish biomass ranging from −47% to −68% (95% CI). Our study provides novel evidence suggesting that invasive and native communities have different biomass – body mass scaling patterns, which likely depend on differences in their trophic ecology and body size distributions. Our results suggest that restoration efforts using environmental flows and common carp control has potential to boost native fish biomass to more than double the current level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.