Abstract

The objective of this study was to more fully understand the mechanical behavior of bone tissue that is important to find an alternative material to be used as an implant and to develop an accurate model to predict the fracture of the bone. Predicting and preventing bone failure is an important area in orthopaedics. In this paper, the macrodamage accumulation models in the bone tissue have been investigated. Phenomenological models for bone damage have been discussed in detail. In addition, 3D finite element model of the femur prepared from imaging data with both cortical and trabecular structures is delineated using MIMICS and ANSYS® and simulated as a composite structure. The damage accumulation occurring during cyclic loading was analyzed for fatigue scenario. We found that the damage accumulates sooner in the multiaxial than in the uniaxial loading condition for the same number of cycles, and the failure starts in the cortical bone. The damage accumulation behavior seems to follow a three-stage growth: a primary phase, a secondary phase of damage growth marked by linear damage growth, and a tertiary phase that leads to failure. Finally, the stiffness of the composite bone comprising the cortical and trabecular bone was significantly different as expected.

Highlights

  • In order to understand the bone fracture, it is very important to study the macrodamage of the bone with respect to mechanical and physiological loads

  • Macrodamage accumulation of bone tissue was estimated for two different loading conditions

  • The MIMICS program was used to create the material properties depending on the Hounsfield unit and the relation among the density of the bone and the modulus of elasticity and Poisson’s ratio assigned based on grayscale distribution across the 3D model of the femur

Read more

Summary

Introduction

In order to understand the bone fracture, it is very important to study the macrodamage of the bone with respect to mechanical and physiological loads. Bone tissue is a complex, multiphasic, heterogeneous, anisotropic, and highly hierarchized material structure. Bone tissue can be divided into five levels [2], which are macro, meso, micros, submicro, and nanostructure. An attempt has been made to establish a detailed understanding of the bone tissue mechanical behavior as it is important in the device design and to derive implant life. An accurate damage prediction model for a bone tissue is needed in order to predict the fracture of the bone or the reliability of a bone-implant structure

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call