Abstract
Cortical and trabecular bone have similar creep behaviors that have been described by power-law relationships, with increases in temperature resulting in faster creep damage accumulation according to the usual Arrhenius (damage rate approximately exp (-Temp.-1)) relationship. In an attempt to determine the phase (collagen or hydroxyapatite) responsible for these similar creep behaviors, we investigated the creep behavior of demineralized cortical bone, recognizing that the organic (i.e., demineralized) matrix of both cortical and trabecular bone is composed primarily of type I collagen. We prepared waisted specimens of bovine cortical bone and demineralized them according to an established protocol. Creep tests were conducted on 18 specimens at various normalized stresses sigma/E0 and temperatures using a noninvasive optical technique to measure strain. Denaturation tests were also conducted to investigate the effect of temperature on the structure of demineralized bone. The creep behavior was characterized by the three classical stages of decreasing, constant, and increasing creep rates at all applied normalized stresses and temperatures. Strong (r2 > 0.79) and significant (p < 0.01) power-law relationships were found between the damage accumulation parameters (steady-state creep rate d epsilon/dt and time-to-failure tf) and the applied normalized stress sigma/E0. The creep behavior was also a function of temperature, following an Arrhenius creep relationship with an activation energy Q = 113 kJ/mole, within the range of activation energies for cortical (44 kJ/mole) and trabecular (136 kJ/mole) bone. The denaturation behavior was characterized by axial shrinkage at temperatures greater than approximately 56 degrees C. Lastly an analysis of covariance (ANCOVA) of our demineralized cortical bone regressions with those found in the literature for cortical and trabecular bone indicates than all three tissues creep with the same power-law exponents. These similar creep activation energies and exponents suggest that collagen is the phase responsible for creep in bone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.