Abstract
This paper shows that robust inference under weak identification is important to the evaluation of many influential macro asset pricing models, including (time‐varying) rare‐disaster risk models and long‐run risk models. Building on recent developments in the conditional inference literature, we provide a novel conditional specification test by simulating the critical value conditional on a sufficient statistic. This sufficient statistic can be intuitively interpreted as a measure capturing the macroeconomic information decoupled from the underlying content of asset pricing theories. Macro‐finance decoupling is an effective way to improve the power of the specification test when asset pricing theories are difficult to refute because of a severe imbalance in the information content about the key model parameters between macroeconomic moment restrictions and asset pricing cross‐equation restrictions. We apply the proposed conditional specification test to the evaluation of a time‐varying rare‐disaster risk model and the construction of robust model uncertainty sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.