Abstract
This paper shows that robust inference under weak identification is important to the evaluation of many influential macro asset pricing models, including long-run risk models and (time-varying) rare-disaster risk models. Building on recent developments in the conditional inference literature, we provide a novel conditional specification test by simulating the critical value conditional on a sufficient statistic. This sufficient statistic can be intuitively interpreted as a measure capturing the macroeconomic information decoupled from the underlying content of asset pricing theories. Macro-finance decoupling is an effective way to improve the power of the specification test when asset pricing theories are difficult to refute because of a severe imbalance in the information content about the key model parameters between macroeconomic moment restrictions and asset pricing cross-equation restrictions. For empirical application, we apply the proposed conditional specification test to evaluate a time-varying rare-disaster risk model and construct data-driven robust model uncertainty sets. The supplemental appendix can be found at: https://ssrn.com/abstract=3609598. The additional materials can be found at: https://ssrn.com/abstract=3787125.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.