Abstract
This study integrated dynamic models and statistical methods to design a novel macroanalysis approach to judge the climate impacts. First, the incidence difference across Köppen-Geiger climate regions was used to determine the four risk areas. Then, the effective influence of climate factors was proved according to the non-climate factors' non-difference among the risk areas, multi-source non-major component data assisting the proof. It is found that cold steppe arid climates and wet temperate climates are more likely to transmit SARS-CoV-2 among human beings. Although the results verified that the global optimum temperature was around 10 °C, and the average humidity was 71%, there was evident heterogeneity among different climate risk areas. The first-grade and fourth-grade risk regions in the Northern Hemisphere and fourth-grade risk regions in the Southern Hemisphere are more sensitive to temperature. However, the third-grade risk region in the Southern Hemisphere is more sensitive to relative humidity. The Southern Hemisphere's third-grade and fourth-grade risk regions are more sensitive to precipitation.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have