Abstract

Computer numerical control (CNC) machine tool plays an extremely significant role in any manufacturing industry due to its automation and high accuracy. Keeping the CNC machine tool at its highest performance to meet the demand of high accuracy machining is always significant. To maintain the accuracy of a machine tool over the time, it is important to measure and compensate the geometric error, one of the main error source of machine tool, especially when the machine get old. There are totally 21 geometrical errors in a 3-axis machine tool including three translational errors and three rotational errors for each axis and three perpendicular error (Squareness) within three axes of the machine. This paper presents an economical and simple method for measuring the geometric error of a 3-axis CNC machine tool based on the machining of actual samples. Three samples for each axis will be machined following a design cutting path. The samples will then be measured using a coordinate measuring machine (CMM). The collect data will be used for estimating the geometric errors. The volumetric errors will be then computed and verified through machining of 3D geometries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call