Abstract
Machine vision systems have emerged for quality assessment of solid dosage forms in the pharmaceutical industry. These can offer a versatile tool for continuous manufacturing while supporting the framework of process analytical technology, quality-by-design, and real-time release testing. The aim of this work is to develop a digital UV/VIS imaging-based system for predicting the in vitro dissolution of meloxicam-containing tablets. The alteration of the dissolution profiles of the samples required different levels of the critical process parameters, including compression force, particle size and content of the API. These process parameters were predicted non-destructively by multivariate analysis of UV/VIS images taken from the tablets. The dissolution profile prediction was also executed using solely the image data and applying artificial neural networks. The prediction error (RMSE) of the dissolution profile points was less than 5%. The alteration of the API content directly affected the maximum concentrations observed at the end of the dissolution tests. This parameter was predicted with a relative error of less than 10% by PLS models that are based on the color components of UV and VIS images. In conclusion, this paper presents a modern, non-destructive PAT solution for real-time testing of the dissolution of tablets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.