Abstract

This work proposes the application of artificial neural networks (ANN) to non-destructively predict the in vitro dissolution of pharmaceutical tablets from Process Analytical Technology (PAT) data. An extended release tablet formulation was studied, where the dissolution was influenced by the composition of the tablets and the tableting compression force. NIR and Raman spectra of the intact tablets were measured, and the dissolution of the tablets was modeled directly from the spectral data. Partial Least Square (PLS) regression and ANN models were developed for the different spectroscopic measurements individually as well as by combining them together. ANN provided up to 3% lower root mean square error for prediction (RMSEP) than the PLS models, due to its capability of modeling non-linearity between the process parameters and dissolution curves. The ANN model using reflection NIR spectra provided the most accurate predictions with 6.5 and 63 mean f1 and f2 values between the computed and measured dissolution curves, respectively. Furthermore, ANN served as a straightforward data fusion method without the need for additional preprocessing steps. The method could significantly advance data processing in the PAT environment, contribute to an enhanced real-time release testing procedure and hence the increased efficacy of dissolution testing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.