Abstract
Machine teaching, a machine learning subfield, may allow for rapid development of artificial intelligence systems able to automatically identify emerging ocular biomarkers from small imaging datasets. We sought to use machine teaching to automatically identify retinal ischemic perivascular lesions (RIPLs) and subretinal drusenoid deposits (SDDs), two emerging ocular biomarkers of cardiovascular disease. IRB approval was obtained. Four small datasets of SD-OCT B-scans were used to train and test two distinct automated systems, one identifying RIPLs and the other identifying SDDs. An open-source interactive machine-learning software program, RootPainter, was used to perform annotation and training simultaneously over a 6-hour period. For SDDs at the B-scan level, test-set accuracy = 92%, sensitivity = 100%, specificity = 88%, positive predictive value (PPV) = 82%, and negative predictive value (NPV) = 100%. For RIPLs at the B-scan level, test-set accuracy = 90%, sensitivity = 60%, specificity = 93%, PPV = 50%, and NPV = 95%. Machine teaching demonstrates promise within ophthalmic imaging to rapidly allow for automated identification of novel biomarkers from small image datasets. [Ophthalmic Surg Lasers Imaging Retina 2024;55:XX-XX.].
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have