Abstract
Radiation damage in semiconductor materials is a crucial concern for electronic applications, especially in the fields of space, military, nuclear, and medical electronics. With the advancements in semiconductor fabrication techniques and the trend of miniaturization, the quality of semiconductor materials and their susceptibility to radiation-induced defects have become more important than ever. In this context, machine learning (ML) algorithms have emerged as a promising tool to study minor radiation-induced defects in semiconductor materials. In this study, we propose a sensitive non-destructive technique for investigating radiation-induced defects using multivariate statistical analyses combined with Raman spectroscopy. Raman spectroscopy is a contactless and non-destructive method widely used to characterize semiconductor materials and their defects. The multivariate statistical methods applied in analyzing the Raman spectra provide high sensitivity in detecting minor radiation-induced defects. The proposed technique was demonstrated by categorizing 100–500 kGy irradiated GaAs wafers into samples with low and high irradiation levels using linear discrimination analysis ML algorithms. Despite the high similarity in the obtained Raman spectra, the ML algorithms correctly predicted the blind testing samples, highlighting the effectiveness of ML in defect study. This study provides a promising approach for detecting minor radiation-induced defects in semiconductor materials and can be extended to other semiconductor materials and devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.