Abstract

A chemoinformatics method was applied to the assignment of absolute configurations and to the quantitative prediction of specific optical rotations using a data set of 88 chiral fluorinated molecules (44 pairs of enantiomers). Counterpropagation neural networks were explored for the classification of enantiomers as dextrorotatory or levorotatory. Regression models were trained using multilayer perceptrons (MLP), random forests (RF) or multilinear regressions (MLR), on the basis of physicochemical atomic stereo (PAS) descriptors. New descriptors were also derived considering the common structural features of the data set (cPAS descriptors), which enabled RF models to predict the whole data set with R = 0.964, mean absolute error (MAE) of 9.8° and root mean square error (RMSE) of 12.5° in leave-one-pair-out cross-validation experiments. The predictions for the 30 compounds measured in chloroform were obtained with R = 0.971, MAE = 9.1° and RMSE = 12.5°, which compares favorably with quantum chemistry calculations reported in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.