Abstract
Safe and high-density storage of hydrogen, for a clean-fuel economy, can be realized by hydride-forming materials, but these materials should be able to store hydrogen at room temperature. Some high-entropy alloys (HEAs) have recently been shown to reversibly store hydrogen at room temperature, but the design of HEAs with appropriate thermodynamics is still challenging. To explore HEAs with appropriate hydride formation enthalpy, this study employs machine learning (ML), in particular, Gaussian process regression (GPR) using four different kernels by training with 420 datum points collected from literature and curated here. The developed ML models are used to predict the formation enthalpy of hydrides for the TixZr2-xCrMnFeNi (x = 0.5, 1.0 and 1.5) system, which is not in the training set. The predicted values by ML are consistent with data from experiments and density functional theory (DFT). The present study thus introduces ML as a rapid and reliable approach for the design of HEAs with hydride formation enthalpies of −25 to −39 kJ/mol for hydrogen storage at room temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.