Abstract
SummaryThis paper presents an extended version of Deeper, a search‐based simulation‐integrated test solution that generates failure‐revealing test scenarios for testing a deep neural network‐based lane‐keeping system. In the newly proposed version, we utilize a new set of bio‐inspired search algorithms, genetic algorithm (GA), and evolution strategies (ES), and particle swarm optimization (PSO), that leverage a quality population seed and domain‐specific crossover and mutation operations tailored for the presentation model used for modeling the test scenarios. In order to demonstrate the capabilities of the new test generators within Deeper, we carry out an empirical evaluation and comparison with regard to the results of five participating tools in the cyber‐physical systems testing competition at SBST 2021. Our evaluation shows the newly proposed test generators in Deeper not only represent a considerable improvement on the previous version but also prove to be effective and efficient in provoking a considerable number of diverse failure‐revealing test scenarios for testing an ML‐driven lane‐keeping system. They can trigger several failures while promoting test scenario diversity, under a limited test time budget, high target failure severity, and strict speed limit constraints.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.