Abstract
In recent years, machine learning has been proposed as a promising strategy to build accurate scoring functions for computational docking finalized to numerically empowered drug discovery. However, the latest studies have suggested that over-optimistic results had been reported due to the correlations present in the experimental databases used for training and testing. Here, we investigate the performance of an artificial neural network in binding affinity predictions, comparing results obtained using both experimental protein-ligand structures as well as larger sets of computer-generated structures created using commercial software. Interestingly, similar performances are obtained on both databases. We find a noticeable performance suppression when moving from random horizontal tests to vertical tests performed on target proteins not included in the training data. The possibility to train the network on relatively easily created computer-generated databases leads us to explore per-target scoring functions, trained and tested ad-hoc on complexes including only one target protein. Encouraging results are obtained, depending on the type of protein being addressed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.