Abstract
Currently, molecular docking is becoming a key tool in drug discovery and molecular modeling applications. The reliability of molecular docking depends on the accuracy of the adopted scoring function, which can guide and determine the ligand poses when thousands of possible poses of ligand are generated. The scoring function can be used to determine the binding mode and site of a ligand, predict binding affinity and identify the potential drug leads for a given protein target. Despite intensive research over the years, accurate and rapid prediction of protein-ligand interactions is still a challenge in molecular docking. For this reason, this study reviews four basic types of scoring functions, physics-based, empirical, knowledge-based, and machine learning-based scoring functions, based on an up-to-date classification scheme. We not only discuss the foundations of the four types scoring functions, suitable application areas and shortcomings, but also discuss challenges and potential future study directions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Interdisciplinary Sciences: Computational Life Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.