Abstract

We present a proof of concept machine learning model resting on a convolutional neural network capable to yield accurate scattering s-wave phase shifts caused by different three-dimensional spherically symmetric potentials at fixed collision energy thereby bypassing the radial Schr\"{o}dinger equation. In out work, we discuss how the Hamiltonian can serve as a guiding principle in the construction of a physically-motivated descriptor. The good performance, even in presence of bound states in the data sets, exhibited by our model that accordingly is trained on the Hamiltonian through each scattering potential, demonstrates the feasibility of this proof of principle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.