Abstract

Optimizing scheduling and allocation strategies in dynamic production environments, notably in Hybrid Flow-Shops, presents significant challenges. This study focuses on resource assignment within dynamic contexts. It proposes an approach that use Genetic Algorithm (GA) to generate data and train machine Learning (ML) to predict near optimal allocations. Through experiments across various scenarios, the accuracy of prediction of different ML models for resource allocation is evaluated. Our findings highlight the potential of ML techniques to improve decision-making in dynamic and flexible manufacturing systems (FMS), contributing to efforts to enhance reactive scheduling strategies. Future work will assess the impact of these decisions on mean completion time, providing deeper insights into on-line scheduling efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.