Abstract
Anisotropic patchy particles have become an archetypical statistical model system for associating fluids. Here, we formulate an approach to the Kern-Frenkel model via the classical density functional theory to describe the positionally and orientationally resolved equilibrium density distributions in flat wall geometries. The density functional is split into a reference part for the orientationally averaged density and an orientational part in mean-field approximation. To bring the orientational part into a kernel form suitable for machine learning (ML) techniques, an expansion into orientational invariants and the proper incorporation of single-particle symmetries are formulated. The mean-field kernel is constructed via ML on the basis of hard wall simulation data. The results are compared to the well-known random-phase approximation, which strongly underestimates the orientational correlations close to the wall. Successes and shortcomings of the mean-field treatment of the orientational part are highlighted and perspectives are given for attaining a full-density functional via ML.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.