Abstract
In the Coastal Hazards System's (CHS) Probabilistic Coastal Hazard Analysis (PCHA) framework developed by the United States Army Corps of Engineers (USACE), historical records of tropical cyclone parameters have been used as data sources for statistical analysis, including fitting marginal distributions and measuring correlations between storm parameters. One limitation of the available historical databases is that observations of central pressure and radius of maximum winds are not available for a large number of storms. This may adversely affect the results of statistical analyses used to develop hazard curves. This study uses machine learning techniques to develop a data imputation method to “fill in” missing storm parameter records in historical datasets used for Joint Probability Method (JPM)-based coastal hazard analysis such as the USACE's CHS-PCHA. Specifically, Gaussian process regression (GPR) and artificial neural network (ANN) models are investigated as candidate machine learning-derived data imputation models, and the performance of different model parameterizations is assessed. Candidate imputation models are compared against existing statistical relationships. The effect of the data imputation process on statistical analyses (marginal distributions and correlation measures) is also evaluated for a series of example coastal reference locations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.