Abstract

This research paper deals with the problem of Metal-Oxide Surge Arrester (MOSA) condition monitoring and a new methodology in surge arrester monitoring and diagnostics is presented. A machine learning algorithm (back propagation regression) is used to estimate the non-linearity coefficient of the surge arrester, based on operating voltage and leakage current of the arrester. Using a simulated system, this research investigates the possibility of application and efficiency of machine learning. It is shown that the applied learning algorithm results are competitive with the model results parameters calculated as R2 = 0.999 and mean absolute real error computed as 0.005 which has shown that the proposed model can be used for MOSA monitoring and diagnostic purposes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.