Abstract

Titrating tacrolimus concentration in liver transplantation recipients remains a challenge in the early post-transplant period. This multicenter retrospective cohort study aimed to develop and validate a machine-learning algorithm to predict tacrolimus concentration. Data from 443 patients undergoing liver transplantation between 2017 and 2020 at an academic hospital in South Korea were collected to train machine-learning models. Long short-term memory (LSTM) and gradient-boosted regression tree (GBRT) models were developed using time-series doses and concentrations of tacrolimus with covariates of age, sex, weight, height, liver enzymes, total bilirubin, international normalized ratio, albumin, serum creatinine, and hematocrit. We conducted performance comparisons with linear regression and populational pharmacokinetic models, followed by external validation using the eICU Collaborative Research Database collected in the United States between 2014 and 2015. In the external validation, the LSTM outperformed the GBRT, linear regression, and populational pharmacokinetic models with median performance error (8.8%, 25.3%, 13.9%, and − 11.4%, respectively; P < 0.001) and median absolute performance error (22.3%, 33.1%, 26.8%, and 23.4%, respectively; P < 0.001). Dosing based on the LSTM model’s suggestions achieved therapeutic concentrations more frequently on the chi-square test (P < 0.001). Patients who received doses outside the suggested range were associated with longer ICU stays by an average of 2.5 days (P = 0.042). In conclusion, machine learning models showed excellent performance in predicting tacrolimus concentration in liver transplantation recipients and can be useful for concentration titration in these patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.