Abstract

This paper presents a fully integrated machine learning (ML) based hardware system for detection of sleep apnea among infants in neonatal intensive care unit (NICU). The system is comprised of a PVDF sensor and a pulse oximeter to acquire breathing signal and oxygen saturation level, respectively, representing the input data. Accuracy rate of this system is over 85 percent with low error loss. The trained ML model has been developed in digital hardware design platform by translating each component into corresponding logic block. Estimated power consumption budget of this system is below 9W. This model can be adopted in future low-cost ML on-chip biomedical system design for apnea detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.