Abstract
BackgroundA significant number of variables are obtained when characterizing patients suspected with myocardial ischemia or at risk of MACE. Guidelines typically use a handful of them to support further workup or therapeutic decisions. However, it is likely that the numerous available predictors maintain intrinsic complex interrelations. Machine learning (ML) offers the possibility to elucidate complex patterns within data to optimize individual patient classification. We evaluated the feasibility and performance of ML in utilizing simple accessible clinical and functional variables for the identification of patients with ischemia or an elevated risk of MACE as determined through quantitative PET myocardial perfusion reserve (MPR). Methods1,234 patients referred to Nitrogen-13 ammonia PET were analyzed. Demographic (4), clinical (8), and functional variables (9) were retrieved and input into a cross-validated ML workflow consisting of feature selection and modeling. Two PET-defined outcome variables were operationalized: (1) any myocardial ischemia (regional MPR < 2.0) and (2) an elevated risk of MACE (global MPR < 2.0). ROC curves were used to evaluate ML performance. Results16 features were included for boosted ensemble ML. ML achieved an AUC of 0.72 and 0.71 in identifying patients with myocardial ischemia and with an elevated risk of MACE, respectively. ML performance was superior to logistic regression when the latter used the ESC guidelines risk models variables for both PET-defined labels (P < .001 and P = .01, respectively). ConclusionsML is feasible and applicable in the evaluation and utilization of simple and accessible predictors for the identification of patients who will present myocardial ischemia and an elevated risk of MACE in quantitative PET imaging.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have