Abstract
This article is the second part in our machine learning series. Part 1 provided a general overview of machine learning in nuclear medicine. Part 2 focuses on neural networks. We start with an example illustrating how neural networks work and a discussion of potential applications. Recognizing that there is a spectrum of applications, we focus on recent publications in the areas of image reconstruction, low-dose PET, disease detection, and models used for diagnosis and outcome prediction. Finally, since the way machine learning algorithms are reported in the literature is extremely variable, we conclude with a call to arms regarding the need for standardized reporting of design and outcome metrics and we propose a basic checklist our community might follow going forward.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.