Abstract

AbstractTraditional methods of discovering new materials, such as the empirical trial and error method and the density functional theory (DFT)‐based method, are unable to keep pace with the development of materials science today due to their long development cycles, low efficiency, and high costs. Accordingly, due to its low computational cost and short development cycle, machine learning is coupled with powerful data processing and high prediction performance and is being widely used in material detection, material analysis, and material design. In this article, we discuss the basic operational procedures in analyzing material properties via machine learning, summarize recent applications of machine learning algorithms to several mature fields in materials science, and discuss the improvements that are required for wide‐ranging application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.