Abstract
In the computer world, data science is the force behind the recent dramatic changes in cybersecurity's operations and technologies. The secret to making a security system automated and intelligent is to extract patterns or insights related to security incidents from cybersecurity data and construct appropriate data-driven models. Data science, also known as diverse scientific approaches, machine learning techniques, processes, and systems, is the study of actual occurrences via the use of data. Due to its distinctive qualities, such as flexibility, scalability, and the capability to quickly adapt to new and unknowable obstacles, machine learning techniques have been used in many scientific fields. Due to notable advancements in social networks, cloud and web technologies, online banking, mobile environments, smart grids, etc., cyber security is a rapidly expanding sector that requires a lot of attention. Such a broad range of computer security issues have been effectively addressed by various machine learning techniques. This article covers several machine-learning applications in cyber security. Phishing detection, network intrusion detection, keystroke dynamics authentication, cryptography, human interaction proofs, spam detection in social networks, smart meter energy consumption profiling, and security concerns with machine learning techniques themselves are all covered in this study. The methodology involves collecting a large dataset of phishing and legitimate instances, extracting relevant features such as email headers, content, and URLs, and training a machine-learning model using supervised learning algorithms. Machine learning models can effectively identify phishing emails and websites with high accuracy and low false positive rates. To enhance phishing detection, it is recommended to continuously update the training dataset to include new phishing techniques and to employ ensemble methods that combine multiple machine learning models for better performance.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have