Abstract

<p>Numerous alternative methods for text classification have been created because of the increase in the amount of online text information available. The cosine similarity classifier is the most extensively utilized simple and efficient approach. It improves text classification performance. It is combined with estimated values provided by conventional classifiers such as Multinomial Naive Bayesian (MNB). Consequently, combining the similarity between a test document and a category with the estimated value for the category enhances the performance of the classifier. This approach provides a text document categorization method that is both efficient and effective. In addition, methods for determining the proper relationship between a set of words in a document and its document categorization is also obtained.</p>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.