Abstract

Efficient and precise calculations of thermal transport properties and figures of merit, alongside a deep comprehension of thermal transport mechanisms, are essential for the practical utilization of advanced thermoelectric materials. In this study, we explore the microscopic processes governing thermal transport in the distinguished crystalline material Tl9SbTe6 by integrating a unified thermal transport theory with machine learning-assisted self-consistent phonon calculations. Leveraging machine learning potentials, we expedite the analysis of phonon energy shifts, higher-order scattering mechanisms, and thermal conductivity arising from various contributing factors, such as population and coherence channels. Our finding unveils an exceptionally low thermal conductivity of 0.31 W m-1 K-1 at room temperature, a result that closely correlates with experimental observations. Notably, we observe that the off-diagonal terms of heat flux operators play a significant role in shaping the overall lattice thermal conductivity of Tl9SbTe6, where the ultralow thermal conductivity resembles that of glass due to limited group velocities. Furthermore, we achieve a maximum ZT value of 3.17 in the c-axis orientation for p-type Tl9SbTe6 at 600 K and an optimal ZT value of 2.26 in the a-axis and b-axis direction for n-type Tl9SbTe6 at 500 K. The crystalline Tl9SbTe6 not only showcases remarkable thermal insulation but also demonstrates impressive electrical properties owing to the dual-degeneracy phenomenon within its valence band. These results not only elucidate the underlying reasons for the exceptional thermoelectric performance of Tl9SbTe6 but also suggest potential avenues for further experimental exploration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.