Abstract

Achieving high thermoelectric performance requires efficient manipulation of thermal conductivity and a fundamental understanding of the microscopic mechanisms of phonon transport in crystalline solids. One of the major challenges in thermal transport is achieving ultralow lattice thermal conductivity. In this study, we use the anti-bonding character of the highest-occupied valence band as an efficient descriptor for discovering new materials with an ultralow thermal conductivity. We first examined the relationship between anti-bonding valence bands (ABVBs) and low lattice thermal conductivity in model systems PbTe and CsPbBr3. Then, we conducted a high-throughput search in the Materials Project database and identified over 600 experimentally stable binary semiconductors with an anti-bonding character in their valence bands. From our candidate list, we conducted a comprehensive analysis of the chemical bonds and the thermal transport in the XS family, where X = K, Rb, and Cs are alkaline metals. These materials all exhibit ultralow thermal conductivities less than 1 W/(m K) at room temperature despite simple structures. We attributed the ultralow thermal conductivity to the weakened bonds and increased phonon anharmonicity due to their ABVBs. Our results provide chemical intuitions to understand lattice dynamics in crystals and open up a convenient venue toward searching for materials with an intrinsically low lattice thermal conductivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call