Abstract
Mapping and monitoring coral reef benthic composition using remotely sensed imagery provides a large-scale inference of spatial and temporal dynamics. These maps have become essential components in marine science and management, with their utility being dependent upon accuracy, scale, and repeatability. One of the primary factors that affects the utility of a coral reef benthic composition map is the choice of the machine-learning algorithm used to classify the coral reef benthic classes. Current machine-learning algorithms used to map coral reef benthic composition and detect changes over time achieve moderate to high overall accuracies yet have not demonstrated spatio-temporal generalisation. The inability to generalise limits their scalability to only those reefs where in situ reference data samples are present. This limitation is becoming more pronounced given the rapid increase in the availability of high temporal (daily) and high spatial resolution (<5 m) multispectral satellite imagery. Therefore, there is presently a need to identify algorithms capable of spatio-temporal generalisation in order to increase the scalability of coral reef benthic composition mapping and change detection. This review focuses on the most commonly used machine-learning algorithms applied to map coral reef benthic composition and detect benthic changes over time using multispectral satellite imagery. The review then introduces convolutional neural networks that have recently demonstrated an ability to spatially and temporally generalise in relation to coral reef benthic mapping; and recurrent neural networks that have demonstrated spatio-temporal generalisation in the field of land cover change detection. A clear conclusion of this review is that existing convolutional neural network and recurrent neural network frameworks hold the most potential in relation to increasing the spatio-temporal scalability of coral reef benthic composition mapping and change detection due to their ability to spatially and temporally generalise.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.