Abstract
Current methods for classifying measurement trajectories in superconducting qubit systems produce fidelities systematically lower than those predicted by experimental parameters. Here, we place current classification methods within the framework of machine learning (ML) algorithms and improve on them by investigating more sophisticated ML approaches. We find that nonlinear algorithms and clustering methods produce significantly higher assignment fidelities that help close the gap to the fidelity possible under ideal noise conditions. Clustering methods group trajectories into natural subsets within the data, which allows for the diagnosis of systematic errors. We find large clusters in the data associated with T1 processes and show these are the main source of discrepancy between our experimental and ideal fidelities. These error diagnosis techniques help provide a path forward to improve qubit measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.