Abstract

Wastewater treatment plants (WWTPs) face challenges in controlling total phosphorus (TP), given more stringent regulations on TP discharging. In particular, WWTPs that operate at a small scale lack resources for real-time monitoring of effluent quality. This study aimed to develop a conceptual alum dosing system for reducing TP concentration, leveraging machine learning (ML) techniques and data from a full-scale WWTP containing incomplete TP information. The proposed system comprises two ML models in series: an Alert model based on LightGBM with an accuracy of 0.92, and a Dosage model employing a voting algorithm through combining three ML algorithms (LightGBM, SGD, and SVC) with an accuracy of 0.76. The proposed system has demonstrated the potential to ensure that 88.1% of the effluent remains below the TP discharge limit, which outperforms traditional dosing methods and could reduce overdosing from 61.3 to 12.1%. Furthermore, the SHapley Additive exPlanations (SHAP) analysis revealed that incorporating the output features from the previous cycle and utilizing the results of the Alert model as the input features for dosage prediction could be an effective method for data with limited information. The findings of this study have practical applications in improving the efficiency and effectiveness of TP control in small-scale WWTPs, providing a valuable solution for complying with stringent regulations and enhancing environmental sustainability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call