Abstract
Gesture contains abundant and complicated information in daily life; as a consequence, gesture recognition attracts a wide range of application prospects and academic values as an important way of achieving human-machine interactions (HMIs). Here, we report an intelligent system consisting of a smart glove made by printed CNT-graphene/PDMS strain sensors. The smart glove shows excellent fitness, comfort, and lightness for human hands. Inspired by machine learning strategies, several objects and gestures can be well classified and implemented by a customized artificial neural network. Several data sets of different sign language gestures and object-grabbing gestures were established, and the result shows that the intelligent system can achieve an average accuracy of 97% and up to 99.4% for a number of gesture groups. Moreover, a robot hand is connected to this system, which is able to react to the motion of human hands with certain gestures where simple sign communication is achieved. These features provide a feasible practical application scheme for gesture recognition in HMIs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.