Abstract
With the global spread of the novel coronavirus, avoiding human-to-human contact has become an effective way to cut off the spread of the virus. Therefore, contactless gesture recognition becomes an effective means to reduce the risk of contact infection in outbreak prevention and control. However, the recognition of everyday behavioral sign language of a certain population of deaf people presents a challenge to sensing technology. Ubiquitous acoustics offer new ideas on how to perceive everyday behavior. The advantages of a low sampling rate, slow propagation speed, and easy access to the equipment have led to the widespread use of acoustic signal-based gesture recognition sensing technology. Therefore, this paper proposed a contactless gesture and sign language behavior sensing method based on ultrasonic signals-UltrasonicGS. The method used Generative Adversarial Network (GAN)-based data augmentation techniques to expand the dataset without human intervention and improve the performance of the behavior recognition model. In addition, to solve the problem of inconsistent length and difficult alignment of input and output sequences of continuous gestures and sign language gestures, we added the Connectionist Temporal Classification (CTC) algorithm after the CRNN network. Additionally, the architecture can achieve better recognition of sign language behaviors of certain people, filling the gap of acoustic-based perception of Chinese sign language. We have conducted extensive experiments and evaluations of UltrasonicGS in a variety of real scenarios. The experimental results showed that UltrasonicGS achieved a combined recognition rate of 98.8% for 15 single gestures and an average correct recognition rate of 92.4% and 86.3% for six sets of continuous gestures and sign language gestures, respectively. As a result, our proposed method provided a low-cost and highly robust solution for avoiding human-to-human contact.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.