Abstract
This research focuses on developing a predictive model that can effectively estimate the condensation heat transfer coefficient (HTC) on vertical tube surfaces during free-fall. The model takes into consideration the presence of non-condensable gases. The main objective is to assemble an extensive and varied database that encompasses different geometric parameters and operational conditions. The motivation here stems from the urgent need to develop practical models and/or correlations that can accurately predict the condensation heat transfer efficiency for industrial heat exchangers affected by non-condensable gases, with a particular focus on passive containment cooling systems (PCCS) employed in nuclear power plants (NPPs). This innovative cooling system utilizes the force of gravity to condense water steam, effectively removing heat from the containment vessel in the event of an accident. For the development of the model, we employed the neural network toolbox in MATLAB to construct an Artificial Neural Network (ANN) known as a Multi-Layer Perceptron (MLP) network. This model was designed to predict the HTC during the condensation process involving two different types of Non-Condensable Gases (NCG): Air and Nitrogen, along with Helium as a representative light gas. To build the model, we utilized a dataset comprising 1,888 data points sourced from 21 experimental references. The input layer of our model receives a range of parameters, encompassing total pressure (Ptot), subcooling temperature (ΔTsub), mass fraction of non-condensable gases (wnc), wall length (L), hydraulic diameter (Dh), the ratio of the Helium to non-condensable gases (RHe/nc), liquid density (ρl), gas density (ρg), liquid viscosity (μl), gas viscosity (μg), saturation temperature (Tsat), latent heat (hfg), liquid thermal conductivity (kl), and gas specific heat (cp,g). The output data of our model corresponds to the condensation HTC (h). To ensure consistent scaling, the input data was normalized by scaling each feature within the range of 0 to 1. On the other hand, the output data underwent a transformation using the natural logarithm. By utilizing Pearson correlation coefficient analysis and importance analysis for parameter selection, a new correlation for heat transfer was developed and evaluated. The developed machine learning model exhibited outstanding effectiveness in precisely forecasting the condensation HTC with an accuracy range of ± 10 % and ± 20 %. The outcome of this investigation represents the notable progress in analyzing extensive datasets gathered through experiments. Specifically, it addresses the previously unexplored influence of Helium gas by harnessing the capabilities of machine learning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.