Abstract
It is necessary to improve the efficiency of meteorological service monitoring in smart cities and refine the prediction of extreme weather in smart cities continuously. Firstly, this paper discusses the weather prediction model of artificial influence under Machine Learning (ML) technology and the weather prediction model under the Decision Tree (DT) algorithm. Through ML technology, meteorological observation systems and meteorological data management platforms are developed. The DT algorithm receives and displays the real meteorological signals of extreme weather. Secondly, Artificial Intelligence (AI) technology stores and manages the data generated in the meteorological detection system. Finally, the lightning monitoring system is used to monitor the meteorological conditions of Shaanxi Province from September to December 2021. In addition, the different meteorological intelligent forecast performance of the intelligent forecast meteorological model is verified and analyzed through the national meteorological forecast results from 2018 to 2019. The results suggest that the ML algorithm can couple bad weather variation with the existing mesoscale regional prediction methods to improve the weather forecast accuracy; the AI system can analyze the laws of cloud layer variation along with the existing data and enhance the operational efficiency of urban weather modification. By comparison, the proposed model outperforms the traditional one by 35.26%, and the maximum, minimum, and average prediction errors are 5.95%, 0.59%, and 3.76%, respectively. This exploration has a specific practical value for improving smart city weather modification operation efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.