Abstract
Machine learning (ML) models are developed to predict draft for mouldboard ploughs operating in sandy-clay-loam soil. The draft of tillage tools is influenced by soil cone-index, tillage-depth, and operating-speed. We used a three-point hitch dynamometer to measure draft force, a cone penetrometer for soil cone-index, rotary potentiometers for tillage-depth, and proximity sensors for operating-speed. Draft requirements were experimentally measured for a two-bottom mouldboard plough at three different tillage-depths and various operating-speeds. We developed prediction models using recent ML algorithms, including Linear-Regression, Ridge-Regression, Support-Vector-Machines, Decision-Trees, k-Nearest-Neighbours, Random-Forests, Adaptive-Boosting, Gradient-Boosting-Regression, Light-Gradient-Boosting-Machine, and Categorical-Boosting. These models were trained and tested using a dataset of field measurements including soil cone-index, tillage-depth, operating-speed, and corresponding draft values. We compared the measured draft with the commonly used ASABE model, which resulted in an R2 of 0.62. Our ML models outperformed the ASABE model with significantly better performance. The test data set achieved R2 values ranging from 0.906 to 0.983. These results demonstrate that the developed ML models effectively capture the complex nonlinear relationship between input parameters and draft of mouldboard plough.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.