Abstract
Ad-hoc network consists of a cluster of mobile nodes. Data transfer among these nodes is achieved by effective communication between them. The absence of a base system makes substantial security an issue. The ad-hoc networks communication is based on a cooperative environment, which is prone to many network-based attacks. One such attack is Distributed Denial of Service (DDoS) attack. Therefore there is a need to develop an Intrusion Detection System (IDS) for malicious activity detection. In this paper, an Intrusion Detection System is proposed to detect one type of DDoS attack known as Gray-hole attack by using machine learning approach to predict malicious activities. The proposed model utilizes Support Vector Machine (SVM) to classify the malicious and non-malicious activity of the nodes. Experiment results show that the proposed model achieves 80% accuracy.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have