Abstract
Heterogeneously catalyzed lignin solvolysis opens the possibility of transforming low value biomass into high value, useful aromatic chemicals, however, its reaction behavior is poorly understood due to the many possible interactions between reaction parameters. In this study, a novel predictive model for bio-oil yield, char yield and reaction time is developed using Random Forest (RF) regression method using data available from the literature to study the impact of surface properties of the catalyst and the weight averaged molecular weight of the lignin (Mw) used in the reaction. The models achieved a coefficient of determination (R2) score of 0.9062, 0.9428 and 0.8327, respectively, and feature importance for each case was explained and tied to studies that provide a mechanistic explanation for the performance of the model. Surface properties and lignin Mw showed no importance to the prediction of bio-oil yield and average pore diameter contributed 3% of feature importance to reaction time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.