Abstract

Herein, we report machine learning algorithms by training data sets from a set of both successful and failed experiments for studying the crystallization propensity of metal-organic nanocapsules (MONCs). Among a variety of studied machine learning algorithms, XGBoost affords the highest prediction accuracy of >90%. The derived chemical feature scores that determine importance of reaction parameters from the XGBoost model assist to identify synthesis parameters for successfully synthesizing new hierarchical structures of MONCs, showing superior performance to a well-trained chemist. This work demonstrates that the machine learning algorithms can assist the chemists to faster search for the optimal reaction parameters from many experimental variables, whose features are usually hidden in the high-dimensional space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.