Abstract

A machine learning methodology using deep neural network (DNN) for interpreting multidimensional solid-state nuclear magnetic resonance (SSNMR) of various synthetic and natural polymers is presented. The separated local field (SLF) SSNMR which correlates local well-defined heteronuclear dipolar with the tensor orientation of the chemical shift anisotropy (CSA) of spin in the solid state can provide valuable structure and molecular dynamics information of synthetic and biopolymers. Compared with the traditional linear least-square fitting, the proposed DNN-based methodology can efficiently and accurately determine the tensor orientation of CSA of both 13C and 15N in all four samples. The method achieves prediction precisions of the Euler angles with < ±5° and is characterized by low training costs and high efficiency (<1 s). The feasibility and robustness of the DNN-based analysis methodology are confirmed by comparison to reported-literature values. This strategy is expected to aid in the interpretation of complex multidimensional NMR spectra of complicated polymer system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call