Abstract
It is shown that Machine Learning (ML) algorithms can usefully capture the effect of crystallization composition and conditions (inputs) on key microstructural characteristics (outputs) of faujasite type zeolites (structure types FAU, EMT, and their intergrowths), which are widely used zeolite catalysts and adsorbents. The utility of ML (in particular, Geometric Harmonics) toward learning input-output relationships of interest is demonstrated, and a comparison with Neural Networks and Gaussian Process Regression, as alternative approaches, is provided. Through ML, synthesis conditions were identified to enhance the Si/Al ratio of high purity FAU zeolite to the hitherto highest level (i.e., Si/Al = 3.5) achieved via direct (not seeded), and organic structure-directing-agent-free synthesis from sodium aluminosilicate sols. The analysis of the ML algorithms’ results offers the insight that reduced Na2O content is key to formulating FAU materials with high Si/Al ratio. An acid catalyst prepared by partial ion exchange of the high-Si/Al-ratio FAU (Si/Al = 3.5) exhibits improved proton reactivity (as well as specific activity, per unit mass of catalyst) in propane cracking and dehydrogenation compared to the catalyst prepared from the previously reported highest Si/Al ratio (Si/Al = 2.8).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.