Abstract

This work addresses the mathematical model building to detect the diameter of the inhibition zone of gilaburu (Viburnum opulus L.) extract against eight different Fusarium strains isolated from diseased potato tubers. Gilaburu extracts were obtained with acetone, ethanol or methanol. The isolated Fusarium strains were: F. solani, F. oxysporum, F. sambucinum, F. graminearum, F. coeruleum, F. sulphureum, F. auneaceum and F. culmorum. In general, it was observed that ethanolic extracts showed highest antifungal activity. The antifungal activity of extracts was evaluated with machine learning (ML) methods. Several ML methods (classification and regression trees (CART), support vector machines (SVM), k-Nearest Neighbors (k−NN), artificial neural network (ANN), ensemble algorithms (EA), AdaBoost (AB) algorithm, gradient boosting (GBM) algorithm, random forests (RF) bagging algorithm and extra trees (ET)) were applied and compared for modeling fungal growth. From this research, it is clear that ML methods have the lowest error level. As a result, ML methods are reliable, fast, and cheap tools for predicting the antifungal activity of gilaburu extracts. These encouraging results will attract more research efforts to implement ML into the field of food microbiology instead of traditional methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.